all files / contracts/libraries/ Pairing.sol

94.74% Statements 18/19
50% Branches 4/8
100% Functions 4/4
97.14% Lines 34/35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143                                                    533×     533×                     2417× 2417× 2417× 2417× 2417× 2417×     2417×                 2417×                       1884× 1884× 1884× 1884× 1884×   1884×               1884×                                   533× 533×   533× 533×   533× 2132× 2132× 2132× 2132× 2132× 2132× 2132×     533× 533×     533×                               528×   528×      
// SPDX-License-Identifier: MIT
 
pragma solidity ^0.8.0;
 
// TODO: update doc
/// @title Pairing
library Pairing {
    uint256 constant PRIME_Q =
        21888242871839275222246405745257275088696311157297823662689037894645226208583;
 
    struct G1Point {
        uint256 X;
        uint256 Y;
    }
 
    // Encoding of field elements is: X[0] * z + X[1]
    struct G2Point {
        uint256[2] X;
        uint256[2] Y;
    }
 
    /*
     * @return The negation of p, i.e. p.plus(p.negate()) should be zero.
     */
    function negate(G1Point memory p) internal pure returns (G1Point memory) {
        // The prime q in the base field F_q for G1
        Iif (p.X == 0 && p.Y == 0) {
            return G1Point(0, 0);
        } else {
            return G1Point(p.X, PRIME_Q - (p.Y % PRIME_Q));
        }
    }
 
    /*
     * @return The sum of two points of G1
     */
    function plus(
        G1Point memory p1,
        G1Point memory p2
    ) internal view returns (G1Point memory r) {
        uint256[4] memory input;
        input[0] = p1.X;
        input[1] = p1.Y;
        input[2] = p2.X;
        input[3] = p2.Y;
        bool success;
 
        // solium-disable-next-line security/no-inline-assembly
        assembly {
            success := staticcall(sub(gas(), 2000), 6, input, 0xc0, r, 0x60)
            // Use "invalid" to make gas estimation work
            switch success
            case 0 {
                invalid()
            }
        }
 
        Erequire(success, 'pairing-add-failed');
    }
 
    /*
     * @return The product of a point on G1 and a scalar, i.e.
     *         p == p.scalar_mul(1) and p.plus(p) == p.scalar_mul(2) for all
     *         points p.
     */
    function scalar_mul(
        G1Point memory p,
        uint256 s
    ) internal view returns (G1Point memory r) {
        uint256[3] memory input;
        input[0] = p.X;
        input[1] = p.Y;
        input[2] = s;
        bool success;
        // solium-disable-next-line security/no-inline-assembly
        assembly {
            success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)
            // Use "invalid" to make gas estimation work
            switch success
            case 0 {
                invalid()
            }
        }
        Erequire(success, 'pairing-mul-failed');
    }
 
    /* @return The result of computing the pairing check
     *         e(p1[0], p2[0]) *  .... * e(p1[n], p2[n]) == 1
     *         For example,
     *         pairing([P1(), P1().negate()], [P2(), P2()]) should return true.
     */
    function pairing(
        G1Point memory a1,
        G2Point memory a2,
        G1Point memory b1,
        G2Point memory b2,
        G1Point memory c1,
        G2Point memory c2,
        G1Point memory d1,
        G2Point memory d2
    ) internal view returns (bool) {
        G1Point[4] memory p1 = [a1, b1, c1, d1];
        G2Point[4] memory p2 = [a2, b2, c2, d2];
 
        uint256 inputSize = 24;
        uint256[] memory input = new uint256[](inputSize);
 
        for (uint256 i = 0; i < 4; i++) {
            uint256 j = i * 6;
            input[j + 0] = p1[i].X;
            input[j + 1] = p1[i].Y;
            input[j + 2] = p2[i].X[0];
            input[j + 3] = p2[i].X[1];
            input[j + 4] = p2[i].Y[0];
            input[j + 5] = p2[i].Y[1];
        }
 
        uint256[1] memory out;
        bool success;
 
        // solium-disable-next-line security/no-inline-assembly
        assembly {
            success := staticcall(
                sub(gas(), 2000),
                8,
                add(input, 0x20),
                mul(inputSize, 0x20),
                out,
                0x20
            )
            // Use "invalid" to make gas estimation work
            switch success
            case 0 {
                invalid()
            }
        }
 
        Erequire(success, 'pairing-opcode-failed');
 
        return out[0] != 0;
    }
}